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System size dependence of the diffusion coefficient in a simple liquid

M. Fushiki*
RICS, National Institute of Advanced Industrial Science and Technology (AIST), Central 2,1-1-1 Umezono, Tsukuba,

Ibaraki 305-8568, Japan
~Received 25 March 2003; published 29 August 2003!

An equation to estimate the system size dependence of the self-diffusion coefficient of a tagged particle
moving in a simple fluid is given using linear-response theory and linearized hydrodynamics. Estimates made
by the equation are compared with the results of the molecular dynamics simulation for a hard-sphere fluid at
two densities,rs3'0.88 and 0.47, wheres is the hard-sphere diameter. Good agreement between theory and
simulation is obtained at the higher density. At the lower density, the agreement becomes poorer, but it is
improved by taking into account the diffusion effect of the tagged particle. The equation gives the same
diffusion coefficient for the infinite system as that obtained by taking into account the long-time tail contribu-
tion of the velocity autocorrelation function@B. J. Alder, D. M. Gass, and T. E. Wainwright, J. Chem. Phys.53,
3813~1970!#. When the tagged particle has a larger mass than the fluid particles, the equation presented here
gives the better estimates. It is confirmed by the molecular dynamics calculation.
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I. INTRODUCTION

The self-diffusion coefficientD, one of the fundamenta
transport coefficients in a simple liquid, has been studied
experiment and molecular level simulation for many ye
@1–3#. We should note, however, thatD as obtained by simu
lations is always affected by the finiteness of the simulat
box, and the correction for it is not negligible~about 10% in
the case of a 500-particle dense hard-sphere fluid! @2#. Al-
though this correction has been argued in connection w
the long-time behavior of the velocity autocorrelation fun
tion @2,3#, the argument is not applicable forD of a heavy
particle moving in a fluid of lighter particles@4#. In this
paper, we present an equation to estimate the system
dependence ofD. It can be utilized even for the diffusion o
a heavy particle.

Let us first consider a fluid consisting of one solute p
ticle labeled 1 andN21 solvent particles labeled 2;N
placed in a cubic simulation box, and impose perio
boundary conditions. The solute particle may have differ
size, mass, etc., from the solvent particles. When a cons
force Fz in the z direction is applied to the solute particle
after a time the system reaches a steady state in which
solute particle has a constant drift velocity

Udri f t ,N5v1,z2vz
f luid ~1!

measured relative to the mean velocity of the surround
fluid,

vz
f luid5

1

N21 (
i 52

N

v i ,z , ~2!

wherev i ,z is thez component of thei th particle velocity. We
see from linear-response theory@5,6# that the ratio
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Udri f t ,N /Fz for a sufficiently smallFz gives the diffusion
coefficient for theN-particle fluid,

DN

kT
5

mf

m11mf

Udri f t ,N

Fz
, ~3!

where mf5(N21)m is the mass of the surrounding fluid
and m1 and m are mass of the solute and solvent particl
respectively. The diffusion coefficient in Eq.~3! can be writ-
ten as

DN5E
0

`

rD~ t;N!dt, ~4!

with the velocity autocorrelation function~VAF!

rD~ t;N!5^v1,z~ t !v1,z~0!&, ~5!

where^ & denotes an equilibrium ensemble average@see Ap-
pendix A for the derivation of Eq.~3!#. When we take the
laboratory frame as a reference and look at the fluid in
steady state at the hydrodynamic scale, we will see that
locity field v( lab)(r ) is created around the solute particle. T
mean velocity of the surrounding fluid defined by Eq.~2! can
be approximately written with thez component ofv( lab)(r ),

vz
f luid.E vz

( lab)~r !dr /L3, ~6!

where L is the simulation box length. SinceFz in Eq. ~3!
should be small enough to ensure linear response,v( lab)(r ) is
likely to obey linearized hydrodynamics, i.e., the so-call
Stokes equation. Since the solution of the Stokes equa
for a sufficiently large simulation box decays as 1/r far from
the solute particle@7–9#, by putting the solution into Eq.~6!
we find thatv f luid

z is inversely proportional toL. Using this
fact together with Eqs.~1! and ~3!, we have

DN5D`2
a

L
, ~7!
©2003 The American Physical Society03-1
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whereD` is the diffusion coefficient for the infinite system
anda is a constant which is independent of the system s
Since the solute particle and its images form a cubic latt
the constanta can be evaluated using the hydrodynamic c
culation for a cubic lattice of spherical particles.

We will show the results of the hydrodynamic calculati
in Sec. II and compare them with those obtained by the e
librium molecular dynamics~MD! simulations for a hard-
sphere fluid in Sec. III.

II. STOKES EQUATION FOR A CUBIC LATTICE OF
SPHERES

In this section we will solve the Stokes equation for
cubic lattice of spheres by using the vorticity.Fz andUdri f t ,N
in Eq. ~3! can be written with the azimuthal component
the vorticity.

When we change the frame of reference for measuring
velocity field from the laboratory frame to one that is movi
with the solute particle, we have a hydrodynamic problem
a steady flow along thez direction through a cubic lattice o
spherical particles from the positive to negative of thez axis.
When the fluid is incompressible and has a uniform visco
h, the steady state velocity fieldv(r ) is obtained by solving
the Stokes equations

“p5hDv ~8!

and

divv50, ~9!

wherep5p(r ) is the local pressure atr . We consider one of
the spherical particles located at the center of a unit cellV0 .
When we take the spherical coordinate system centere
the particle, we can expand each component ofv
5(v r ,vu ,vf) in V0 with the spherical harmonics and the
derivatives@7,8#. If L is much larger than the radiusa of the
spherical particle, only the lowest-order terms in each of
expansions

v r~r ,u!5 f r~r !cosu, ~10!

vu~r ,u!5 f u~r !sinu, ~11!

and

vf~r ,u!50 ~12!

give a set of good approximate solutions.
Substituting these approximate solutions, Eqs.~10!–~12!

into Eq. ~9! and calculating divv in the spherical coordinate
system lead to

d fr~r !

dr
12

f r~r !1 f u~r !

r
50. ~13!

On the other hand, the substitution of Eqs.~10!–~12! into
the expression of the vorticityv5“3v in the spherical co-
ordinate system leads tov r5vu50 and vf(r ,u)
5 f v(r )sinu, where
02120
e.
e,
-
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e

f v~r !5
d fu~r !

dr
1

f r~r !1 f u~r !

r
. ~14!

When we take the rotation of Eq.~8!, we have the Laplace
equation forv,

nv5“•v2“3~“3v!52“3~“3v!50. ~15!

Substitutingv5(0,0,vf) into Eq. ~15!, we obtain the ordi-
nary differential equation forf v(r ),

d2f v~r !

dr2
1

2

r

d fv~r !

dr
22

f v~r !

r 2
50. ~16!

The solution of Eq.~16! is

f v~r !5
A

r 2
1Br ~17!

with two constantsA andB, where the ratio betweenA andB
is determined by the boundary conditions at the four s
planesG i ,i 51, . . . ,4, of theunit cell V0. Since eachG i is
the plane of mirror symmetry@10# and the vorticity is an
axial vector, vorticity components parallel toG i vanish on
G i . By approximating the boundary ofV0 with the Wigner-
Seitz sphere of radiusr 05(3/4p)1/3L @11#, and remembering
that the vorticity has only one nonzero componentvf(r ,u)
5 f v(r )sinu, the boundary conditions for the vorticity com
ponents atG i lead to

f v~r 0!50. ~18!

Equation~18! gives the ratio betweenA andB and the final
form is

f v~r !5A/r 2@12~r /r 0!3#. ~19!

Equations~13! and~19! are the basic relations in our hy
drodynamic calculation, andFz and Udri f t ,N can be written
in simple forms using these relations. To evaluateFz , we
first note that the constantA in Eq. ~19! is related to the force
F f luid exerted on a spherical particle by the fluid~see Appen-
dix B for the derivation!,

F f luid524phA. ~20!

When we look at the equation of motion for the solute p
ticle in the finite fluid, we see that

F f luid52
mf

m11mf
Fz ~21!

~see Appendix B for the derivation!. By combining Eqs.~20!
and ~21! we have

Fz5S 11
m1

mf
D4phA. ~22!

On the other hand, substituting Eq.~6! into Eq. ~1!, Udri f t ,N
is written as
3-2
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Udri f t ,N52E vz~r !dr /Vout , ~23!

where

vz~r !5v r~r ,u!cosu2vu~r ,u!sinu ~24!

is thez component of the velocity field defined in the fram
moving with the solute particle andVout5L324pa3/3. By
putting Eqs.~10! and ~11! into Eq. ~24! and performing the
angular integration in Eq.~23!, we obtain

Udri f t ,N52

E
a

r
0
f z~r !r 2dr

r
0

32a3
, ~25!

f z~r !5 f r~r !22 f u~r !, ~26!

where we have approximated the unit cell with the Wign
Seitz sphere introduced above Eq.~18!. By differentiating
Eq. ~26! with respect tor and calculatingd fr(r )/dr and
d fu(r )/dr in the resulting equation using Eqs.~13! and~14!,
we have a differential equation forf z(r ):

d fz~r !

dr
522 f v~r !. ~27!

When we put Eq.~19! into Eq.~27! and integrate it, we have

f z~r !5 f z~r 1!1
2A

r F11
1

2
~r /r 0!3G2

2A

r 1
F11

1

2
~r 1 /r 0!3G ,

~28!

where r 1(.a) is a reference distance andf z(r 1) is the
boundary value. Substituting Eq.~28! into Eq. ~25! and per-
forming the integration, we have

Udri f t ,N52
1

3 F f z~r 1!2
2A

r 1
G2

1.2A

a

a

r 0
1OF S a

r 0
D 3G .

~29!

Substituting Eqs.~22! and~29! into the right hand side of Eq
~3! and omitting higher-order terms thana/r 0, we have

DN

Dslip
5

D`

Dslip
2

1.2a

r 0
, ~30!

whereDslip5kT/4pha is the diffusion coefficient obtained
with the hydrodynamic slip boundary condition@1#. Since
r 05(3/4p)1/3L, Eq. ~30! is equivalent to Eq.~7! with coef-
ficient a51.2(4p/3)1/3/4ph. We note that the slope21.2 of
Eq. ~30! was obtained by approximating the cubic cell with
sphere. This value is slightly different from that obtained
the expansion of the Ewald sum witha/r 0 , 21.173@12,13#.

III. COMPARISON WITH SIMULATION RESULTS

We have examined the asymptotic equation~30! by a se-
ries of equilibrium MD simulations for identical hard spher
of N516–16 384 at two volumes,V51.6V0 and 3V0, where
02120
-

V05Ns3/A2 is the close-packed volume ands is the diam-
eter of a hard sphere@14#. Each simulation was carried ou
during a 1.63105tE time period for equilibration and a
106tE–43106tE time period for taking an ensemble ave
age, wheretE5Am/(pkT)/@4rs2g(s)# is the Enskog col-
lision time with the mean fluid densityr5N/V and the ra-
dial distribution function at the contact distance,g(s). From
the result of each MD simulation, the diffusion coefficie
was calculated using Eq.~4!. Since the velocity autocorrela
tion function for identical particles is written as

rD~ t;N!5
1

3N (
i 51

N

^vi~ t !•vi~0!&, ~31!

putting Eq.~31! into Eq. ~4! and performing the time inte
gration, we have@3#

DN5 lim
t→`

D~ t;N!, ~32!

where

D~ t;N!5
1

6N (
i 51

N

^@r i~ t !2r i~0!#•@vi~ t !1vi~0!#&.

~33!

In the numerical calculation lim
t→`

on the right-hand side o

Eq. ~32! is replaced with the plateau value ofD(t;N).
We note that the viscosityh appears in the asymptoti

equation, Eq.~30!, through Dslip5kT/4pha. We took h
values atV/V051.6 and 3 as 1.5hE @15# and 1.02hE @2#
from the previous MD results for the hard-sphere fluid
where hE5(5p/24)rsAmkT/p(1/y10.810.761y) is the
Enskog estimate@16,17# with the configurational part of the
pressure y5PV/NkT215(2p/3)rs3g(s) @18#. After
evaluatingh in this way, we plotted the MD results ofDN at
the two densities as functions ofa/r 0 in Fig. 1. Except for
the result of the smallestN at V/V051.6, all the MD results
at each density seem to sit on a line, so we determined
line by the least squares fit of the MD data. The slopes any
intercepts are in Table I. The table shows that the slope a
higher density is in fairly good agreement with the hydrod
namic estimate,21.2, but at the lower density the fitte

FIG. 1. Diffusion coefficient for a hard-sphere fluid as a fun
tion of system sizer 05(3V/4p)1/3. Circles and triangles are MD
results atV/V051.6 and 3, respectively. Straight lines are the le
squares fits of the MD results. The standard deviations of the
results are less than the sizes of the symbols.
3-3
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value of the slope becomes 20% smaller in absolute va
than the hydrodynamic estimate. This disagreement at lo
density can be attributed to diffusion of the solute partic
Substituting Eq.~29! into Eq. ~3!, we see that the slope o
Eq. ~30! is proportional to the ratioA/Fz , and with the aid of
Eq. ~22! the ratio A/Fz is evaluated asA/Fz5(1
21/N)/4ph'1/4ph for a fluid consisting of identical par
ticles. However, due to the diffusion of the solute partic
that acts as a mediator of the momentum from the outsid
the fluid,A/Fz becomes smaller than that determined by E
~22!. A similar diffusion effect of the solute particle has be
considered by Alder and Wainwright in the argument of t
long-time behavior of the VAF@19,20#. By adopting their
argument, we multiply the correction factor

x5
n

n1DE
~34!

to the slope of Eq.~30!, wheren5h/(rm) is the kinematic
viscosity of the fluid andDE53kTtE /(2m) is the Enskog
estimate of the diffusion coefficient@21#. When we put theh
values presented above into Eq.~34!, we have the corrected
slopes21.2x521.19 and21.00 forV/V051.6 and 3, re-
spectively. Each of the corrected slopes agree with that ta
lated in Table I within a few percent@22#.

Thus we found that the MD results of the diffusion coe
ficient in the largeN region can be estimated by Eq.~30!
with the corrected slope21.2x. Using this fact, we can es
timate D` with a few to several MD simulations for finite
systems. For instance, after fitting the MD results ofDN at
the three smallestN values inV/V051.6 using a quadratic
function of a/r 0, we can determineD` with the condition
that the asymptotic line is tangent to the quadratic functi
In this way we obtainD`51.02, which is in a fairly good
agreement with the value in Table I.

Another method of estimatingD` may be worth mention-
ing. This method is based on the long time behavior of
VAF that was referred to in deriving Eq.~34!. More than
three decades ago, Alder and Wainwright found a long-ti
tail in the VAF of a hard-disk or hard-sphere fluid@19,23#,

rD~ t;N!;at2d/2, ~35!

whered is the space dimension of the fluid. Ford53 the
coefficienta is evaluated as@2,24–26#

a5
2kT

3rm1
S 4pn

x D 23/2

~36!

with x defined in Eq.~34!. In a MD simulation with periodi-
cally aligned cells, the long-time tail is interfered by th

TABLE I. Slope andy intercepts,D` /Dslip , of the least squares
fitted line in Fig. 1.

V/V0 Slope D` /Dslip

1.6 21.15860.008 1.007260.0007
3.0 20.98160.005 0.930560.0004
02120
e
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acoustic wave propagating across the periodic cells and
appears around timetc @3,19,27,28#. Using this fact,D` is
estimated as@2,3#

D`5E
0

tc
rD~ t;N!dt1aE

tc

`

t23/2dt.DN1
2a

tc
1/2

. ~37!

By applying Eq.~37! to the MD results forN5108 and 500,
Alder et al. obtainedD` /Dslip50.98 and 0.927 forV/V0
51.6 and 3.0, respectively@2,29#. Erpenbeck and Wood late
analyzed their own results forN54000 hard-sphere fluids
@28# and obtained an improved valueD` /Dslip51.007 for
V/V051.6 @3,17#. Our estimates shown in Table I are
agreements with these values within a few percent. Howe
we should note that, due to the 1/m1 factor in Eq.~36!, a in
Eq. ~37! becomes insignificant for a heavy solute partic
Thus Eq.~37! implies thatDN for a heavy solute particle
converges with a finiteN. On the other hand, since Eq.~30!
does not containm1, this implies that the difference betwee
DN andD` remains in the same order of magnitude irresp
tive of the solute mass. In order to see the mass effect,
have performed the MD simulations for hard-sphere fluid
V51.6V0 with mass ratiosm1 /m54, 10, and 25@30#. The
results ofDN together with the line of Eq.~30! are shown in
Fig. 2. The figure shows thatDN has similar system size
dependence as that for the identical particles. No mass
pendence was obtained andDN can be described by th
asymptotic equation~30!. From the y intercepts of the
straight lines, we obtainedD` /Dslip50.94, 0.89, and 0.85
for m1 /m54, 10, and 25, respectively. We note that t
computation ofDN for the heavy solute particle is time con
suming because the sampling overN particles in Eq.~33! no
longer holds. Thus our method of extrapolatingDN at small
N to D` is very relevant in these cases.
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APPENDIX A: LINEAR-RESPONSE THEORY

In this appendix we will derive Eq.~3! using linear-
response theory. The derivation is analogous to that fo
fluid consisting of identical particles@31–33#. We first note
that the situation of a constant external forceFz applying to
the solute particle fort.0 is handled by adding a perturba
tion term Hext(t)52z1Fzu(t) to the system Hamiltonian
where u(t) is the Heaviside step function. Then linea
response theory tells us that the nonequilibrium ensem
average of a dynamical variableQ for t.0 is related to the
time integral of the equilibrium ensemble average@5,6#,

^Q~ t !&ne5
Fz

kTE0

t

^Q~ t8!v1,z~0!&dt8, ~A1!

where ^ &ne denotes the nonequilibrium ensemble avera
When we chooseQ(t)5v1,z(t)2vz

f luid(t)[vz
rel(t), we have

from Eq. ~A1!,

^vz
rel~ t !&ne5

Fz

kTE0

t

^vz
rel~ t !v1,z~0!&dt8

5
Fz

kT S 11
m1

mf
D E

0

t

^v1,z~ t8!v1,z~0!&dt8.

~A2!

To derive the last equation we have used the fact that t
momentum is zero. By takingt→` of Eq. ~A2! and noting
lim

t→`
vz

rel(t)5Udri f t , we obtain Eq.~3!.

APPENDIX B: DRAG FORCE

According to hydrodynamics, the force exerted on
spherical particle by a fluid,F f luid , is written as the surface
integral of the stress as@9#

F f luid5E $@2p~r !1s rr #cosu2s rusinu%dS, ~B1!
ys

III.

02120
a

le

.

al

where s rr 52h]v r /]r and s ru5h(]vu /]r 2vu /r
21/r ]v r /]u) are respectively ther 2r and r 2u compo-
nents of the shear stress and integration is done at a sphe
surface of radiusr>a. By performing the angular integral in
Eq. ~B1! and using Eqs.~13! and ~14!, we get

F f luid52
4p

3
hr 2@ f p~r !12h f v~r !#, ~B2!

where f p(r ) is the coefficient for cosu in the spherical har-
monic expansion of the pressure. When we write Eq.~8! as

“p52h“3v ~B3!

with the aid of Eq.~9!, we see that theu component of Eq.
~B3! leads to

f p~r !52hF r
d fv

dr
1 f v~r !G . ~B4!

By putting Eq.~B4! into Eq. ~B2!, we get

F f luid5
4p

3
hr 2F r

d fv

dr
2 f v~r !G . ~B5!

When we put Eq.~19! into Eq. ~B5!, we obtain Eq.~20! in
the text.

To relateF f luid with Fz , we note thez component of the
equation of motion for the solute particle in the laborato
frame of reference,

m1v̇1,z5Fz1F f luid , ~B6!

for the total momentum balance condition,

m1v̇1,z1mf v̇z
f luid5Fz , ~B7!

and for the steady state condition,

U̇dri f t ,N5 v̇1,z2 v̇z
f luid50. ~B8!

By eliminatingv̇1,z andv̇z
f luid from Eqs.~B6!–~B8!, we have

Eq. ~21! in the text.
-
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